इस सीरीज को देखने के लिए यहाँ क्लिक करें 👇

      

 Latest Podcast Discussion

Click to this Banner for Listen


 

Language

Friday, March 8, 2024

Trigonometry formulas for Mathematics

 Here are the trigonometry formulas commonly encountered in mathematics:




1. Basic Trigonometric Ratios:

- Sine: `\( \sin(\theta) = \frac{{\text{opposite}}}{{\text{hypotenuse}}} \)`

- Cosine: `\( \cos(\theta) = \frac{{\text{adjacent}}}{{\text{hypotenuse}}} \)`

- Tangent: `\( \tan(\theta) = \frac{{\text{opposite}}}{{\text{adjacent}}} \)`

2. Reciprocal Trigonometric Ratios:

- Cosecant: `\( \csc(\theta) = \frac{1}{{\sin(\theta)}} = \frac{{\text{hypotenuse}}}{{\text{opposite}}} \)`

- Secant: `\( \sec(\theta) = \frac{1}{{\cos(\theta)}} = \frac{{\text{hypotenuse}}}{{\text{adjacent}}} \)`

- Cotangent: `\( \cot(\theta) = \frac{1}{{\tan(\theta)}} = \frac{{\text{adjacent}}}{{\text{opposite}}} \)`

3. Pythagorean Identities:

- `\( \sin^2(\theta) + \cos^2(\theta) = 1 \)`

- `\( 1 + \tan^2(\theta) = \sec^2(\theta) \)`

- `\( 1 + \cot^2(\theta) = \csc^2(\theta) \)`

4. Angle Sum and Difference Identities:

- `\( \sin(A \pm B) = \sin(A)\cos(B) \pm \cos(A)\sin(B) \)`

- `\( \cos(A \pm B) = \cos(A)\cos(B) \pm \sin(A)\sin(B) \)`

- `\( \tan(A \pm B) = \frac{{\tan(A) \pm \tan(B)}}{{1 \mp \tan(A)\tan(B)}} \)`

5. Double Angle Identities:

- `\( \sin(2\theta) = 2\sin(\theta)\cos(\theta) \)`

- `\( \cos(2\theta) = \cos^2(\theta) - \sin^2(\theta) = 2\cos^2(\theta) - 1 = 1 - 2\sin^2(\theta) \)`

- `\( \tan(2\theta) = \frac{{2\tan(\theta)}}{{1 - \tan^2(\theta)}} \)`

6. Half Angle Identities:

- `\( \sin\left(\frac{\theta}{2}\right) = \pm \sqrt{\frac{{1 - \cos(\theta)}}{2}} \)`

- `\( \cos\left(\frac{\theta}{2}\right) = \pm \sqrt{\frac{{1 + \cos(\theta)}}{2}} \)`

- `\( \tan\left(\frac{\theta}{2}\right) = \pm \sqrt{\frac{{1 - \cos(\theta)}}{{1 + \cos(\theta)}}} \)`

7. Law of Sines:

-` \( \frac{{a}}{{\sin(A)}} = \frac{{b}}{{\sin(B)}} = \frac{{c}}{{\sin(C)}} \)`

8. Law of Cosines:

- `\( a^2 = b^2 + c^2 - 2bc\cos(A) \)`

- `\( b^2 = a^2 + c^2 - 2ac\cos(B) \)`

- `\( c^2 = a^2 + b^2 - 2ab\cos(C) \)`

9. Product-to-Sum and Sum-to-Product Identities:

- Product-to-Sum:

  - `\( \sin(A)\sin(B) = \frac{1}{2}[\cos(A-B) - \cos(A+B)] \)`

  - `\( \cos(A)\cos(B) = \frac{1}{2}[\cos(A-B) + \cos(A+B)] \)`

  - `\( \sin(A)\cos(B) = \frac{1}{2}[\sin(A-B) + \sin(A+B)] \)`

- Sum-to-Product:

  - `\( \sin(A) + \sin(B) = 2\sin\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right) \)`

  - `\( \sin(A) - \sin(B) = 2\cos\left(\frac{A+B}{2}\right)\sin\left(\frac{A-B}{2}\right) \)`

  - `\( \cos(A) + \cos(B) = 2\cos\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right) \)`

  - `\( \cos(A) - \cos(B) = -2\sin\left(\frac{A+B}{2}\right)\sin\left(\frac{A-B}{2}\right) \)`

10. Area of a Triangle Using Trigonometry:

- If `\( a \), \( b \), and \( c \)` are the lengths of the sides of a triangle, and `\( A \)` is the angle opposite side `\( a \),` then the area of the triangle is given by:

  - `\( \text{Area} = \frac{1}{2}ab\sin(C) = \frac{1}{2}bc\sin(A) = \frac{1}{2}ca\sin(B) \)`

11. Sine and Cosine Addition Formulas:

- `\( \sin(A + B) = \sin(A)\cos(B) + \cos(A)\sin(B) \)`

- `\( \cos(A + B) = \cos(A)\cos(B) - \sin(A)\sin(B) \)`

12. Sine and Cosine Half-Angle Formulas:

- `\( \sin^2\left(\frac{\theta}{2}\right) = \frac{1 - \cos(\theta)}{2} \)`

- `\( \cos^2\left(\frac{\theta}{2}\right) = \frac{1 + \cos(\theta)}{2} \)`

13. Cofunction Identities:

- `\( \sin(\theta) = \cos\left(\frac{\pi}{2} - \theta\right) \)`

- `\( \cos(\theta) = \sin\left(\frac{\pi}{2} - \theta\right) \)`

- `\( \tan(\theta) = \cot\left(\frac{\pi}{2} - \theta\right) \)`

14. Law of Tangents:

- `\( \frac{{a - b}}{{a + b}} = \frac{{\tan\left(\frac{{A - B}}{2}\right)}}{{\tan\left(\frac{{A + B}}{2}\right)}} \)`

15. Half-Angle Tangent Formula:

- `\( \tan\left(\frac{\theta}{2}\right) = \frac{{\sin(\theta)}}{{1 + \cos(\theta)}} \)` or `\( \tan\left(\frac{\theta}{2}\right) = \frac{{1 - \cos(\theta)}}{{\sin(\theta)}} \)`

16. Angle Conversion Formulas:

- Degrees to Radians: `\( \text{Radians} = \frac{{\text{Degrees} \times \pi}}{{180}} \)`

- Radians to Degrees: `\( \text{Degrees} = \frac{{\text{Radians} \times 180}}{{\pi}} \)`

17. Periodicity Formulas:

- `\( \sin(\theta + 2\pi) = \sin(\theta) \)`

- `\( \cos(\theta + 2\pi) = \cos(\theta) \)`

- `\( \tan(\theta + \pi) = \tan(\theta) \)`

18. Inverse Trigonometric Functions:

- `\( \sin^{-1}(x) = \arcsin(x) \), where \( -\frac{\pi}{2} \leq \arcsin(x) \leq \frac{\pi}{2} \)`

- `\( \cos^{-1}(x) = \arccos(x) \), where \( 0 \leq \arccos(x) \leq \pi \)`

- `\( \tan^{-1}(x) = \arctan(x) \),` 

`where \( -\frac{\pi}{2} < \arctan(x) < \frac{\pi}{2} \)`

19. Trigonometric Identities Involving Powers:

- `\( \sin^3(\theta) = \frac{3}{4}\sin(\theta) - \frac{1}{4}\sin(3\theta) \)`

- `\( \cos^3(\theta) = \frac{3}{4}\cos(\theta) + \frac{1}{4}\cos(3\theta) \)`

20. Trigonometric Functions of Negative Angles:

- `\( \sin(-\theta) = -\sin(\theta) \)`

- `\( \cos(-\theta) = \cos(\theta) \)`

- `\( \tan(-\theta) = -\tan(\theta) \)`

21. Trigonometric Addition and Subtraction Formulas:

- `\( \sin(A + B) = \sin A \cos B + \cos A \sin B \)`

- `\( \sin(A - B) = \sin A \cos B - \cos A \sin B \)`

- `\( \cos(A + B) = \cos A \cos B - \sin A \sin B \)`

- `\( \cos(A - B) = \cos A \cos B + \sin A \sin B \)`

22. Trigonometric Triple Angle Formulas:

- `\( \sin(3\theta) = 3\sin\theta - 4\sin^3\theta \)`

- `\( \cos(3\theta) = 4\cos^3\theta - 3\cos\theta \)`

- `\( \tan(3\theta) = \frac{3\tan\theta - \tan^3\theta}{1 - 3\tan^2\theta} \)`

23. Trigonometric Half-Angle Formulas:

- `\( \sin\left(\frac{\theta}{2}\right) = \pm \sqrt{\frac{1 - \cos\theta}{2}} \)`

- `\( \cos\left(\frac{\theta}{2}\right) = \pm \sqrt{\frac{1 + \cos\theta}{2}} \)`

- `\( \tan\left(\frac{\theta}{2}\right) = \pm \sqrt{\frac{1 - \cos\theta}{1 + \cos\theta}} \)`

24. Trigonometric Sum and Difference of Cubes Formulas:

- `\( \sin(A + B)\sin(A - B) = \sin^2A - \sin^2B \)`

- `\( \cos(A + B)\cos(A - B) = \cos^2A - \cos^2B \)`

25. Euler's Formula:

- `\( e^{i\theta} = \cos\theta + i\sin\theta \)`

26. Hyperbolic Trigonometric Formulas:

- `\( \sinh(x) = \frac{e^x - e^{-x}}{2} \)`

- `\( \cosh(x) = \frac{e^x + e^{-x}}{2} \)`

- `\( \tanh(x) = \frac{\sinh(x)}{\cosh(x)} \)`

27. Inverse Hyperbolic Trigonometric Functions:

- `\( \sinh^{-1}(x) = \ln(x + \sqrt{x^2 + 1}) \)`

- `\( \cosh^{-1}(x) = \ln(x + \sqrt{x^2 - 1}) \)`

- `\( \tanh^{-1}(x) = \frac{1}{2}\ln\left(\frac{1 + x}{1 - x}\right) \)`

28. Power-Reducing Formulas:

- `\( \sin^2(\theta) = \frac{1 - \cos(2\theta)}{2} \)`

- `\( \cos^2(\theta) = \frac{1 + \cos(2\theta)}{2} \)`

- `\( \tan^2(\theta) = \frac{1 - \cos(2\theta)}{1 + \cos(2\theta)} \)`

29. Law of Sines for Angles:

- `\( \frac{\sin(A)}{a} = \frac{\sin(B)}{b} = \frac{\sin(C)}{c} \)`

30. Law of Cosines for Angles:

- `\( \cos(A) = \frac{b^2 + c^2 - a^2}{2bc} \)`

- `\( \cos(B) = \frac{c^2 + a^2 - b^2}{2ca} \)`

- `\( \cos(C) = \frac{a^2 + b^2 - c^2}{2ab} \)`

31. Polar Coordinates Conversion:

- `\( x = r \cos(\theta) \)`

- `\( y = r \sin(\theta) \)`

32. Trigonometric Integration Formulas:

- `\( \int \sin(x) \, dx = -\cos(x) + C \)`

- `\( \int \cos(x) \, dx = \sin(x) + C \)`

- `\( \int \tan(x) \, dx = -\ln|\cos(x)| + C \)`

33. Trigonometric Differentiation Formulas:

- `\( \frac{d}{dx}[\sin(x)] = \cos(x) \)`

- `\( \frac{d}{dx}[\cos(x)] = -\sin(x) \)`

- `\( \frac{d}{dx}[\tan(x)] = \sec^2(x) \)`

34. Trigonometric Identities for Even and Odd Functions:

- `\( \sin(-x) = -\sin(x) \) (Odd Function)`

- `\( \cos(-x) = \cos(x) \) (Even Function)`

35. Trigonometric Identities involving Cofunctions:

- `\( \sin\left(\frac{\pi}{2} - x\right) = \cos(x) \)`

- `\( \cos\left(\frac{\pi}{2} - x\right) = \sin(x) \)`

36. General Solution of Trigonometric Equations:

- `\( \sin(x) = \sin(\alpha) \) has solutions \( x = \alpha + 2\pi n \) and \( x = \pi - \alpha + 2\pi n \)`

- `\( \cos(x) = \cos(\alpha) \) has solutions \( x = \alpha + 2\pi n \) and \( x = -\alpha + 2\pi n \)`

These additional trigonometric formulas and identities extend the range of problems that can be solved using trigonometry and provide deeper insights into the relationships between trigonometric functions.

No comments:

Post a Comment

"Attention viewers: Kindly note that any comments made here are subject to community guidelines and moderation. Let's keep the conversation respectful and constructive. Do not add any link in comments. We are also Reviewing all comments for Publishing. Thank you for your cooperation!"

POPULAR TOPIC

LATEST VIDEO